4.3 Article

Nanoethosomal formulation for skin targeting of amphotericin B: an in vitro and in vivo assessment

Journal

JOURNAL OF LIPOSOME RESEARCH
Volume 25, Issue 4, Pages 294-307

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.3109/08982104.2014.995670

Keywords

Amphotericin B; antifungal activity; nanoethosomes; skin targeting; topical fungemia

Funding

  1. DST (New Delhi)
  2. Department of Science and Technology (DST), New Delhi under INSPIRE scheme [IF 120665]

Ask authors/readers for more resources

The present study is envisaged to develop nanoethosomal formulation for enhanced topical delivery of amphotericin B (AmB) for the treatment of cutaneous fungal infections. AmB encapsulated nanoethosomes were prepared using mechanical dispersion method in a strength of 0.1% w/w similar to the strength of marketed topical formulation. Vesicle size of nanoethosomal formulations was found to be in the range of 186 +/- 2 to 298 +/- 4 nm. The optimized nanoethosomal formulation was further incorporated in gel base to form AmB nanoethogel formulation. Rheological characterization study of nanoethogel demonstrated its viscoelastic nature with high elasticity and resistance to deformation at 37 degrees C. The yield stress value was found to be 108.05 +/- 2.4 and 52.15 +/- 0.9 Pa for nanoethogel and marketed gel formulation, respectively. The nanoethogel formulation exhibited 2.7- and 3.5-fold higher steady state transdermal flux and skin deposition of AmB, respectively, in comparison to marketed formulation. Confocal laser scanning microscopy (CLSM) study also revealed enhanced skin permeation and deposition with nanoethogel formulation. In vivo study showed that topical application of nanoethogel does not exhibit any skin irritation as tested by Draize test. The developed formulation, in comparison to the marketed gel, demonstrated a remarkable increase in the antifungal activity against Candida albicans. It is thus corroborated from the above results that nanoethosomal formulation represents an efficacious carrier for effective topical delivery of AmB.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available