4.3 Article

Liposomal formulations of poorly soluble camptothecin: drug retention and biodistribution

Journal

JOURNAL OF LIPOSOME RESEARCH
Volume 23, Issue 1, Pages 70-81

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.3109/08982104.2012.742537

Keywords

Colon cancer; scintigraphic imaging; HT-29 mouse tumor xenograft model; In-111-labeled liposomes; H-3-labeled CPT

Funding

  1. Sparebanken Nord-Norges gavefond

Ask authors/readers for more resources

Camptothecin (CPT) represents a potent anticancer drug. However, its therapeutic use is impaired by both drug solubility, hydrolysis, and protein interactions in vivo. Use of liposomes as a drug-formulation approach could overcome some of these challenges. The aim of this study was to perform a mechanistic study of the incorporation and retention of the lipophilic parent CPT compound in different liposome formulations using radiolabeled CPT and thus to be able to identify promising CPT delivery systems. In this context, we also wanted to establish an appropriate mouse tumor model, in vivo scintigraphic imaging, and biodistribution methodology for testing the most promising formulation. CPT retention in various liposome formulations after incubation in buffer and serum was determined. The HT-29 mouse tumor model, In-111-labeled liposomes, as well as H-3-labeled CPT were used to investigate the biodistribution of liposomes and drug. The ability of different liposome formulations to retain CPT in buffer was influenced by lipid concentration and drug/lipid ratio, rather than lipid composition. The tested formulations were cleared from the blood in the following order: CPT solution > CPT liposomes > In-111-labeled liposomes, and liposomes mainly accumulated in the liver. Lipid composition did not influence CPT retention to the same extent as earlier observed from incorporation studies. The set-up for the biodistribution study works well and is suited for future in vivo studies on CPT liposomes. The biodistribution study showed that liposomes circulated longer than free drug, but premature release of drug from liposomes occurred. Further studies to develop formulations with higher retention potential and prolonged circulation are desired.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available