4.6 Article

Lipid imaging for visualizing cilastatin amelioration of cisplatin-induced nephrotoxicity

Journal

JOURNAL OF LIPID RESEARCH
Volume 59, Issue 9, Pages 1561-1574

Publisher

ELSEVIER
DOI: 10.1194/jlr.M080465

Keywords

mass spectrometry; kidney; cancer; renal disease; molecular imaging; nephroprotection

Funding

  1. Minesterio de Economia y Competitividad Grants [CTQ-2014-55711-R, CTQ2017-85673-R, ISCIII-FIS PI14/01195, ISCIII-FIS PI17/00276]
  2. Federacion Espanola de Enfermedades Raras funds from the European Commission A Way of Making Europe
  3. Instituto de Salud Carlos III-RETIC [REDinREN/RD16/0009/0026]
  4. Comunidad de Madrid [B2017/BMD-3686]

Ask authors/readers for more resources

Nephrotoxicity is a major limitation to cisplatin antitumor therapies. Cilastatin, an inhibitor of renal dehydropeptidase-I, was recently proposed as a promising nephroprotector against cisplatin toxicity, preventing apoptotic cell death. In this work, cilastatin nephroprotection was further investigated in a rat model, with a focus on its effect on 76 renal lipids altered by cisplatin, including 13 new cisplatin-altered mitochondrial cardiolipin species. Lipid imaging was performed with MALDI mass spectrometry imaging (MALDI-MSI) in kidney sections from treated rats. Cilastatin was proved to significantly diminish the lipid distribution alterations caused by cisplatin, lipid levels being almost completely recovered to those of control samples. The extent of recovery of cisplatin-altered lipids by cilastatin turned out to be relevant for discriminating direct or secondary lipid alterations driven by cisplatin. Lipid peroxidation induced by cisplatin was also shown to be reduced when cilastatin was administered. Importantly, significant groups separation was achieved during multivariate analysis of cortex and outer-medullary lipids, indicating that damaged kidney can be discerned from the nephroprotected and healthy groups and classified according to lipid distribution. Therefore, we propose MALDI-MSI as a powerful potential tool offering multimolecule detection possibilities to visualize and evaluate nephrotoxicity and nephroprotection based on lipid analysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available