4.6 Article

Nutrient-dependent phosphorylation channels lipid synthesis to regulate PPARα

Journal

JOURNAL OF LIPID RESEARCH
Volume 54, Issue 7, Pages 1848-1859

Publisher

ELSEVIER
DOI: 10.1194/jlr.M036103

Keywords

de novo lipogenesis; starvation; peroxisome proliferator-activated receptor alpha

Funding

  1. National Institutes of Health [DK-076729, DK-088083, DK-20579, DK-56341, F32-DK-083895, T32-DK-07120]
  2. American Heart Association

Ask authors/readers for more resources

Peroxisome proliferator-activated receptor (PPAR)alpha is a nuclear receptor that coordinates liver metabolism during fasting. Fatty acid synthase (FAS) is an enzyme that stores excess calories as fat during feeding, but it also activates hepatic PPAR alpha by promoting synthesis of an endogenous ligand. Here we show that the mechanism underlying this paradoxical relationship involves the differential regulation of FAS in at least two distinct subcellular pools: cytoplasmic and membrane-associated. In mouse liver and cultured hepatoma cells, the ratio of cytoplasmic to membrane FAS-specific activity was increased with fasting, indicating higher cytoplasmic FAS activity under conditions associated with PPAR alpha activation. This effect was due to a nutrient-dependent and compartment-selective covalent modification of FAS. Cytoplasmic FAS was preferentially phosphorylated during feeding or insulin treatment at Thr-1029 and Thr-1033, which flank a dehydratase domain catalytic residue. Mutating these sites to alanines promoted PPAR alpha target gene expression. Rapamycin-induced inhibition of mammalian/mechanistic target of rapamycin complex 1 (mTORC1), a mediator of the feeding/insulin signal to induce lipogenesis, reduced FAS phosphorylation, increased cytoplasmic FAS enzyme activity, and increased PPAR alpha target gene expression. Rapamycin-mediated induction of the same gene was abrogated with FAS knockdown. These findings suggest that hepatic FAS channels lipid synthesis through specific subcellular compartments that allow differential gene expression based on nutritional status.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available