4.6 Article

Proteolysis sensitizes LDL particles to phospholipolysis by secretory phospholipase A2 group V and secretory sphingomyelinase

Journal

JOURNAL OF LIPID RESEARCH
Volume 51, Issue 7, Pages 1801-1809

Publisher

ELSEVIER
DOI: 10.1194/jlr.M003103

Keywords

proteolytic enzymes; atherosclerosis; low-density lipoprotein

Ask authors/readers for more resources

LDL particles that enter the arterial intima become exposed to proteolytic and lipolytic modifications. The extracellular hydrolases potentially involved in LDL modification include proteolytic enzymes, such as chymase, cathepsin S, and plasmin, and phospholipolytic enzymes, such as secretory phospholipases A(2) (sPLA(2)-IIa and sPLA(2)-V) and secretory acid sphingomyelinase (sSMase). Here, LDL was first proteolyzed and then subjected to lipolysis, after which the effects of combined proteolysis and lipolysis on LDL fusion and on binding to human aortic proteoglycans (PG) were studied. Chymase and cathepsin S led to more extensive proteolysis and release of peptide fragments from LDL than did plasmin. sPLA(2)-IIa was not able to hydrolyze unmodified LDL, and even preproteolysis of LDL particles failed to enhance lipolysis by this enzyme. However, preproteolysis with chymase and cathepsin S accelerated lipolysis by sPLA(2)-V and sSMase, which resulted in enhanced fusion and proteoglycan binding of the preproteolyzed LDL particles. Taken together, the results revealed that proteolysis sensitizes the LDL particles to hydrolysis by sPLA(2)-V and sSMase. By promoting fusion and binding of LDL to human aortic proteoglycans, the combination of proteolysis and phospholipolysis of LDL particles potentially enhances extracellular accumulation of LDL-derived lipids during atherogenesis.-Plihtari, R., E. Hurt-Camejo, K. Oorni, and P. T. Kovanen. Proteolysis sensitizes LDL particles to phospholipolysis by secretory phospholipase A2 group V and secretory sphingomyelinase. J. Lipid Res. 2010. 51: 1801-1809.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available