4.6 Article

Dietary docosahexaenoic acid supplementation alters select physiological endocannabinoid-system metabolites in brain and plasma

Journal

JOURNAL OF LIPID RESEARCH
Volume 51, Issue 6, Pages 1416-1423

Publisher

ELSEVIER
DOI: 10.1194/jlr.M002436

Keywords

anandamide; 2-arachidonoylglycerol; lipidomics; metabolomics; mouse; nutritional fatty-acid supplementation; omega-3 fatty acids

Funding

  1. National Institutes of Health NIH/NIDA [P01 DA9158, T32 DA7312]
  2. Nestec, Ltd.
  3. Loders-Croklaan
  4. National Fisheries Institute
  5. NATIONAL INSTITUTE ON DRUG ABUSE [T32DA007312, P01DA009158] Funding Source: NIH RePORTER

Ask authors/readers for more resources

The endocannabinoid metabolome consists of a growing, (patho)physiologically important family of fatty-acid derived signaling lipids. Diet is a major source of fatty acid substrate for mammalian endocannabinoid biosynthesis. The principal long-chain PUFA found in mammalian brain, docosahexaenoic acid (DHA), supports neurological function, retinal development, and overall health. The extent to which dietary DHA supplementation influences endocannabinoid-related metabolites in brain, within the context of the circulating endocannabinoid profile, is currently unknown. We report the first lipidomic analysis of acute 2-week DHA dietary supplementation effects on the physiological state of 15 fatty-acid, N-acylethanolamine, and glycerol-ester endocannabinoid metabolome constituents in murine plasma and brain. The DHA-rich diet markedly elevated DHA, eicosapentaenoic acid, 2-eicosapentanoylglycerol (EPG), and docosahexanoylethanolamine in both compartments. Dietary DHA enhancement generally affected the synthesis of the N-acyl-ethanolamine and glycerol-ester metabolites to favor the docosahexaenoic and eicosapentaenoic vs. arachidonoyl and oleoyl homologs in both brain and plasma. The greater overall responsiveness of the endocannabinoid metabolome in plasma versus brain may reflect a more circumscribed homeostatic response range of brain lipids to dietary DHA supplementation. The ability of short-term DHA enhancement to modulate select constituents of the physiological brain and plasma endocannabinoid metabolomes carries metabolic and therapeutic implications.-Wood, J. T., J. S. Williams, L. Pandarinathan, D. R. Janero, C. J. Lammi-Keefe, and A. Makriyannis. Dietary docosahexaenoic acid supplementation alters select physiological endocannabinoid-system metabolites in brain and plasma. J. Lipid Res. 2010. 51: 1416-1423.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available