4.6 Article

The selective COX-2 inhibitor celecoxib modulates sphingolipid synthesis

Journal

JOURNAL OF LIPID RESEARCH
Volume 50, Issue 1, Pages 32-40

Publisher

ELSEVIER
DOI: 10.1194/jlr.M800122-JLR200

Keywords

cancer; cyclooxygenase-2; apoptosis; dihydroceramide desaturase; ceramide; dihydroceramide

Funding

  1. Deutsche Forschungsgemeinschaft Forschergruppe [GR2011/2-1]

Ask authors/readers for more resources

Sphingolipids such as ceramides (Cers) play important roles in cell proliferation, apoptosis, and cell cycle regulation. An increased Cer level is linked to the cytotoxic effects of several chemotherapeutics. Various selective cyclooxygenase-2 (COX-2) inhibitors induce anti-proliferative effects in tumor cells. We addressed the possible interaction of the selective COX-2 inhibitors, coxibs, with the sphingolipid pathway as an explanation of their anti-proliferative effects. Sphingolipids were measured using liquid chromatography tandem mass spectrometry. Treatment of various cancer cell lines with celecoxib significantly increased sphinganine, C16:0-, C24:0-, C-24:1-dihydroceramide (dhCer) and led to a depletion of C24:0-, C-24:1-Cer in a time-and concentration-dependent manner, whereas other coxibs had no effect. Using C-13, N-15-labeled L-serine, we demonstrated that the augmented dhCers after celecoxib treatment originate from de novo synthesis. Celecoxib inhibited the dihydroceramide desaturase (DEGS) in vivo with an IC50 of 78.9 +/- 1.5 mu M and increased total Cer level about 2-fold, indicating an activation of sphingolipid biosynthesis. Interestingly, inhibition of the sphingolipid biosynthesis by specific inhibitors of L-serine palmitoyltransferase diminished the anti-proliferative potency of celecoxib. In conclusion, induction of de novo synthesis of sphingolipids and inhibition of DEGS contribute to the anti-proliferative effects of celecoxib.-Schiffmann, S., J. Sandner, R. Schmidt, K. Birod, I. Wobst, H. Schmidt, C. Angioni, G. Geisslinger, and S. Grosch. The selective COX-2 inhibitor celecoxib mo1dulates sphingolipid synthesis. J. Lipid Res. 2009. 50: 32-40.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available