4.7 Article

Strain and Temperature Sensing Characteristics of Single-Mode-Multimode-Single-Mode Structures

Journal

JOURNAL OF LIGHTWAVE TECHNOLOGY
Volume 27, Issue 13, Pages 2348-2356

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JLT.2008.2008820

Keywords

Graded index multimode fiber; modal interference; single-mode-multimode-single-mode (SMS) structure; strain and temperature sensors

Ask authors/readers for more resources

We present a comprehensive study of the strain and temperature-sensing characteristics of single-mode-multimode-single-mode (SMS) structures based on the modal interference of guided modes of graded index multimode fiber (MMF) section spliced in between two single-mode fibers. A detailed theoretical study of the structures in terms of the refractive index distribution, effect of dopant and their concentrations, and the variation of core diameter has been carried out. Our study shows that for the SMS structure with a GeO2-doped MMF there exists a critical wavelength on either side of which the spectrum shows opposite spectral shift with a change in temperature/strain, whereas for structures with a P2O5-doped MMF it shows monotonic red shift with increasing temperature/strain. It has been found that the critical wavelength shifts toward higher wavelengths with decreasing q value/doping concentration. Using different MMFs, both the red and blue spectral shifts have been observed experimentally. It has also been found that the SMS structure has higher sensitivity toward this critical wavelength. The study should find application in designing strain-insensitive high-sensitive temperature sensors or vice versa.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available