4.7 Review

Progress in epitaxial growth and performance of quantum dot and quantum wire lasers

Journal

JOURNAL OF LIGHTWAVE TECHNOLOGY
Volume 26, Issue 9-12, Pages 1540-1555

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JLT.2008.923645

Keywords

semiconductor lasers; surface-emitting lasers; quantum dots

Ask authors/readers for more resources

We report on interplay of epitaxial growth phenomena and device performance in quantum dot (QD) and quantum wire (QWW) lasers based on self-organized nanostructutres. InAs QDs are the most explored model system for basic understanding of near-ideal QD devices. Vertically-coupled growth of QDs and activated phase separation allow ultimate QD wavefunction engineering enabling GaAs lasers beyond 1400 mu and polarization-insensitive optical amplification. A feasibility of QD semiconductor optical amplifiers at terabit frequencies using InAs QDs is manifested at 1300 and 1500 run. 1250-1300 nm QD GaAs edge emitters and VCSELs operate beyond 10 Gb/s with ultimate temperature robustness. Furthermore, temperature-insensitive operation without current or modulation voltage adjustment at > 20 Gb/s is demonstrated up to similar to 90 degrees C. Light-emitting devices based on InGaN-QDs cover ultraviolet (UV) and visible blue-green spectral ranges. In these applications, InN-rich nanodomains prevent diffusion of nonequilibrium carries towards crystal defects and result in advanced degradation robustness of the devices. All the features characteristic to QDs are unambiguously confirmed for InGaN structures. For the red spectral range InGaAlP lasers are used. Growth on misoriented surfaces, characteristic to these devices, leads to nano-periodically-step-bunched epitaxial surfaces resulting in two principal effects: 1) step-bunch-assisted alloy phase separation, leading to a spontaneous formation of ordered natural superlattices; 2) formation of quantum wire-like structures in the active region of the device. A high degree of polarization is revealed in the luminescence recorded from the top surface of the structures, in agreement with the QWW nature of the gain medium. QD and QWW lasers are remaining at the frontier of the modern optoelectronics penetrating into the mainstream applications in key industries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available