4.5 Article

2-Arachidonoyl-glycerol- and arachidonic acid-stimulated neutrophils release antimicrobial effectors against E. coli, S. aureus, HSV-1, and RSV

Journal

JOURNAL OF LEUKOCYTE BIOLOGY
Volume 93, Issue 2, Pages 267-276

Publisher

OXFORD UNIV PRESS
DOI: 10.1189/jlb.0412200

Keywords

leukotriene; cannabinoid receptor; endocannabinoid; eicosanoid; GPR55; 5-lipoxygenase

Funding

  1. CIHR
  2. Natural Sciences and Engineering Research Council of Canada
  3. Fonds de Recherche du Quebec-Sante

Ask authors/readers for more resources

The endocannabinoid 2-AG is highly susceptible to its hydrolysis into AA, which activates neutrophils through de novo LTB4 biosynthesis, independently of CB activation. In this study, we show that 2-AG and AA stimulate neutrophils to release antimicrobial effectors. Supernatants of neutrophils activated with nanomolar concentrations of 2-AG and AA indeed inhibited the infectivity of HSV-1 and RSV. Additionally, the supernatants of 2-AG-and AA-stimulated neutrophils strongly impaired the growth of Escherichia coli and Staphylococcus aureus. This correlated with the release of a large amount (micrograms) of alpha-defensins, as well as a limited amount (nanograms) of LL-37. All the effects of AA and 2-AG mentioned above were prevented by inhibiting LTB4 biosynthesis or by blocking BLT1. Importantly, neither CB2 receptor agonists nor antagonists could mimic nor prevent the effects of 2-AG, respectively. In fact, qPCR data show that contaminating eosinophils express similar to 100-fold more CB2 receptor mRNA than purified neutrophils, suggesting that CB2 receptor expression by human neutrophils is limited and that contaminating eosinophils are likely responsible for the previously documented CB2 expression by freshly isolated human neutrophils. The rapid conversion of 2-AG to AA and their subsequent metabolism into LTB4 promote 2-AG and AA as multifunctional activators of neutrophils, mainly exerting their effects by activating the BLT1. Considering that nanomolar concentrations of AA or 2-AG were sufficient to impair viral infectivity, this suggests potential physiological roles for 2-AG and AA as regulators of host defense in vivo. J. Leukoc. Biol. 93: 267-276; 2013.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available