4.8 Article

The optimal thermo-optical properties and energy saving potential of adaptive glazing technologies

Journal

APPLIED ENERGY
Volume 156, Issue -, Pages 1-15

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2015.05.065

Keywords

Smart glazing; Responsive building elements; High performance facades; Optimisation; Receding horizon control

Funding

  1. EPSRC
  2. Wintech Ltd.
  3. National Natural Science Foundation of China [51408427]
  4. Engineering and Physical Sciences Research Council [1260556] Funding Source: researchfish

Ask authors/readers for more resources

The development of dynamic building envelope technologies, which adapt to changing outdoor and indoor environments, is considered a crucial step towards the achievement of the nearly Zero Energy Building target. It is currently not possible to evaluate the energy saving potential of innovative adaptive transparent building envelopes in an accurate manner. This creates difficulties in selecting between competing technologies and is a barrier to systematic development of these innovative technologies. The main aim of this work is to develop a method for devising optimal adaptive glazing properties and to evaluate the energy saving potential resulting from the adoption of such a technology. The method makes use of an inverse performance-oriented approach, to minimize the total primary energy use of a building. It is applied to multiple case studies (office reference room with 4 different cardinal orientations and in three different temperate climates) in order to evaluate and optimise the performance of adaptive glazing as it responds to changing boundary conditions on a monthly and daily basis. A frequency analysis on the set of optimised adaptive properties is subsequently performed to identify salient features of ideal adaptive glazing. The results show that high energy savings are achievable by adapting the transparent part of the building envelope alone, the largest component being the cooling energy demand. As expected, the energy savings are highly sensitive to: the time scale of the adaptive mechanisms; the capability of the facade to adapt to the outdoor climatic condition; the difference between outdoor climatic condition and the comfort range. Moreover important features of the optimal thermo-optical properties are identified. Of these, one of the most important findings is that a unique optimised technology, varying its thermo-optical properties between a limited number of states could be effective in different climates and orientations. (C) 2015 The Authors. Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available