4.6 Article

Tumor necrosis factor inhibitor therapy in ankylosing spondylitis: differential effects on pain and fatigue and brain correlates

Journal

PAIN
Volume 156, Issue 2, Pages 297-304

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/01.j.pain.0000460310.71572.16

Keywords

Gray matter; Pain; Fatigue; Biologics; TNF

Funding

  1. Canada Research Chair Program (CRC in Brain and Behaviour)
  2. CIHR Operating Grant
  3. University of Toronto Center for the Study of Pain
  4. Canadian Pain Society

Ask authors/readers for more resources

Ankylosing spondylitis is associated with back pain and fatigue and impacts mobility but can be treated with tumor necrosis factor inhibitors (TNFi). The differential effects of TNFi treatment on multiple symptoms and the brain is not well delineated. Thus, we conducted a 2-part study. In study 1, we conducted a retrospective chart review in 129 ankylosing spondylitis patients to assess TNFi effects on pain, fatigue, motor function, Mobility, and quality of life (QoL). After at least 10 weeks of TNFi treatment, patients had clinically significant improvements (>30%) in pain (including neuropathic pain), most disease and QoL factors, and normalized sensory detection thresholds. However, residual fatigue (mean = 5.3) was prominent. Although 60% of patients had significant relief of pain, only 22% of patients had significant relief of both pain and fatigue. Therefore, the preferential TNFi treatment effect on pain compared with fatigue could contribute to suboptimal effects on QoL. Part 2 was a prospective study in 14 patients to identify TNFi treatment effects on pain, fatigue, sensory and psychological factors, and brain cortical thickness based on 3T magnetic resonance imaging. Centrally, TNFi was associated with statistically significant cortical thinning of motor, premotor, and posterior parietal regions. Pain intensity reduction was associated with cortical thinning of the secondary somatosensory cortex, and pain unpleasantness reduction was associated with the cortical thinning of motor areas. In contrast, fatigue reduction correlated with cortical thinning of the insula, primary sensory cortex/inferior parietal sulcus, and superior temporal polysensory areas. This indicates that TNFi treatment produces changes in brain areas implicated in sensory, motor, affective, and cognitive functions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available