4.5 Article

Pivotal Advance: Eosinophils mediate early alum adjuvant-elicited B cell priming and IgM production

Journal

JOURNAL OF LEUKOCYTE BIOLOGY
Volume 83, Issue 4, Pages 817-821

Publisher

FEDERATION AMER SOC EXP BIOL
DOI: 10.1189/jlb.0607392

Keywords

BALB/c; MHC II; innate immunity

Ask authors/readers for more resources

Alum, aluminum-hydroxide-containing compounds, long used as adjuvants in human vaccinations, functions by ill-defined, immunostimulatory mechanisms. Antigen-free alum has been shown to act via a previously unidentified, splenic Gr1(+), IL-4-expressing myeloid cell population to stimulate early B cell priming. We demonstrate that the alum-elicited and -activated splenic myeloid cells are IL-4-expressing eosinophils that function to prime B cell responses. Eosinophils are the principal Gr1(+), IL-4(+) cells in the spleens 6 days following i.p. alum administration. Alum-elicited splenic B cell priming, as evidenced by MHC II cross-linking-mediated calcium mobilization developed in wild-type BALB/c mice, was absent in Delta dblGATA BALB/c eosinophil-deficient mice and could be reconstituted by adoptive eosinophil infusions into the eosinophil-deficient mice. Moreover, early antigen-specific IgM antibody responses in alum-antigen-immunized mice were impaired in eosinophil-deficient mice and were restored with adoptive transfers of eosinophils. Thus, eosinophils, leukocytes of the innate immune system that contain preformed cytokines, including IL-4, have novel, immunomodulatory roles in the initial priming of B cells elicited by the adjuvant alum and in the optimal early B cell generation of antigen-specific IgM.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available