4.7 Article

Transient Receptor Potential Vanilloid 4 (TRPV4) Is Downregulated in Keratinocytes in Human Non-Melanoma Skin Cancer

Journal

JOURNAL OF INVESTIGATIVE DERMATOLOGY
Volume 134, Issue 9, Pages 2408-2417

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1038/jid.2014.145

Keywords

-

Categories

Funding

  1. Fondazione Ente Cassa di Risparmio di Firenze
  2. Associazione Italiana per la Ricerca sul Cancro (AIRC MFAG) [13336]

Ask authors/readers for more resources

A subgroup of the transient receptor potential (TRP) channels, including vanilloid 1 (TRPV1), TRPV2, TRPV3, TRPV4, and TRP ankyrin 1 (TRPA1), is expressed in cutaneous peptidergic somatosensory neurons, and has been found in skin non-neuronal cells, such as keratinocytes. Different cancer cells express TRPs, where they may exert either pro- or antitumorigenic roles. Expression and function of TRPs in skin cancers have been, however, poorly investigated. Here, we have studied the distribution and expression of TRPs by immunohistochemistry and messenger RNA (mRNA) in human healthy skin and human keratinocytic tumors, including intraepidermal proliferative disorders (solar keratosis (SK) and Bowen's disease), and non-melanoma skin cancer (NMSC; basal cell and squamous cell carcinomas). Similar TRPV1, TRPV2, and TRPV3 staining was found in keratinocytes from healthy and tumor tissues. TRPA1 staining was increased solely in SK samples. However, the marked TRPV4 staining and TRPV4 mRNA expression, observed in healthy or inflamed skin, was abrogated both in premalignant lesions and NMSC. In a human keratinocyte cell line (HaCaT), TRPV4 stimulation released IL-8, which in turn downregulated TRPV4 expression. Selective reduction in TRPV4 expression could represent an early biomarker of skin carcinogenesis. Whether the cytokine-dependent, autocrine pathway that results in TRPV4 downregulation contributes to NMSC mechanism remains to be determined.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available