4.7 Article

Tonic Inhibition of TRPV3 by Mg2+ in Mouse Epidermal Keratinocytes

Journal

JOURNAL OF INVESTIGATIVE DERMATOLOGY
Volume 132, Issue 9, Pages 2158-2165

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/jid.2012.144

Keywords

-

Categories

Funding

  1. Texas Medical Center Digestive Diseases Center [0008355]
  2. Mission Connect/TIRR Foundation [011-101]
  3. University of Texas Health Science Center
  4. National Institutes of Health National Institute of Diabetes and Digestive and Kidney Diseases [R01 DK092590]

Ask authors/readers for more resources

The transient receptor potential vanilloid 3 channel (TRPV3) is abundantly expressed in epidermal keratinocytes and has important roles in sensory biology and skin health. Mg2+ deficiency causes skin disorders under certain pathological conditions such as type 2 diabetes mellitus. In this study, we investigated the effect of Mg2+ on TRPV3 in primary epidermal keratinocytes. Extracellular Mg2+ ([Mg2+](o)) inhibited TRPV3-mediated membrane current and calcium influx. TRPV3 activation induced a calcium signaling pathway culminating in activation of the cAMP response element binding. TRPV3 inhibition by [Mg2+](o), the TRPV3 blocker ruthenium red, or TRPV3 siRNA suppressed this response. In TRPV3-expressing Chinese hamster ovary cells, both extracellular and intracellular Mg2+ inhibited TRPV3 single-channel conductance, but not open probability. Neutralization of an aspartic acid residue (D641) in the extracellular pore loop or two acidic residues (E679, E682) in the inner pore region significantly attenuated the inhibitory effect of extracellular or intracellular Mg2+ on TRPV3-mediated signaling, respectively. Our findings suggest that epidermal TRPV3 is tonically inhibited by both extracellular and intracellular Mg2+, which act on both sides of the channel pore loop. Mg2+ deficiency may promote the function of TRPV3 and contribute to the pathogenesis of skin diseases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available