4.7 Article

A Circadian Clock in HaCaT Keratinocytes

Journal

JOURNAL OF INVESTIGATIVE DERMATOLOGY
Volume 131, Issue 2, Pages 338-348

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1038/jid.2010.315

Keywords

-

Categories

Funding

  1. Deutsche Forschungsgemeinschaft [SFB 618, SFB 740]
  2. EU

Ask authors/readers for more resources

To anticipate daily environmental changes, most organisms developed endogenous timing systems, the so-called circadian (similar to 24 hours) clocks. Circadian clocks exist in most peripheral tissues and govern a huge variety of cellular, metabolic, and physiological processes. Recent studies have suggested daytime-dependent variations in epidermal functions such as barrier recovery and pH homeostasis. However, a local circadian clock in epidermal keratinocytes has not been reported yet, and as such the molecular link between the circadian system and epidermal physiology remains elusive. In this study we describe a functional cell autonomous circadian clock in human adult low calcium temperature (HaCaT) keratinocytes. Using live-cell bioluminescence imaging and mRNA expression time series, we show robust circadian transcription of canonical clock genes in synchronized HaCaT keratinocytes. Genetic and pharmacological perturbation experiments as well as the phase relations between clock gene rhythms confirm that the molecular makeup of the HaCaT keratinocyte clock is very similar to that of other peripheral clocks. Furthermore, temperature was identified to be a potent time cue (Zeitgeber) for the epidermal oscillator. Temperature cycles entrain HaCaT keratinocytes, leading to the identification of rhythmic expression of several genes involved in epidermal physiology such as cholesterol homeostasis and differentiation. Thus, we present HaCaT keratinocytes as an excellent model to study the regulation of keratinocyte physiology by the circadian clock in a simple yet robust in vitro system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available