4.7 Article

Protective Effect of Kit Signaling for Melanocyte Stem Cells against Radiation-Induced Genotoxic Stress

Journal

JOURNAL OF INVESTIGATIVE DERMATOLOGY
Volume 131, Issue 9, Pages 1906-1915

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/jid.2011.148

Keywords

-

Categories

Funding

  1. Japan Science and Technology Agency
  2. JSPS
  3. MEXT
  4. Grants-in-Aid for Scientific Research [22590239] Funding Source: KAKEN

Ask authors/readers for more resources

Radiation-induced hair graying is caused by irreversible defects in the self-renewal and/or development of follicular melanocyte stem cells in the hair follicles. Kit signaling is an essential growth and differentiation signaling pathway for various cell lineages including melanocytes, and its radioprotective effects have been shown in hematopoietic cells. However, it is uncertain whether Kit signaling exerts a radioprotective effect for melanocytes. In this study, we found that various loss-of-function mutations of Kit facilitate radiation-induced hair graying. In contrast, transgenic mice expressing the ligand for Kit (Kitl) in the epidermis have significantly reduced levels of radiation-induced hair graying. The X-ray doses used did not show a systemic lethal effect, indicating that the in vivo radiosensitivity of Kit mutants is mainly caused by the damaged melanocyte stem cell population. X-ray-damaged melanocyte stem cells seemed to take the fate of ectopically pigmented melanocytes in the bulge regions of hair follicles in vivo. Endothelin 3, another growth and differentiation factor for melanocytes, showed a lesser radioprotective effect compared with Kitl. These results indicate the prevention of radiation-induced hair graying by Kit signaling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available