4.5 Article

MaMk1, a FUS3/KSS1-type mitogen-activated protein kinase gene, is required for appressorium formation, and insect cuticle penetration of the entomopathogenic fungus Metarhizium acridum

Journal

JOURNAL OF INVERTEBRATE PATHOLOGY
Volume 115, Issue -, Pages 68-75

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jip.2013.10.014

Keywords

Metarhizium acridum; Fus3/Kss1-type MAPK; MaMk1; Virulence; Penetration; Appressorium formation

Categories

Funding

  1. National Department Public Benefit Research Foundation of China [200903052]
  2. Natural Science Foundation of China [30900964]
  3. Natural Science Foundation Project of CQ CSTC [2010BB1231]

Ask authors/readers for more resources

Entomopathogenic fungi have great potential for development as insecticides. However, large-scale use of mycoinsecticides is partially limited by poor efficiency. In many fungal pathogens, the yeast and fungal extracellular signal-regulated kinase (YERK1) subfamily is crucial to the fungal pathogenicity. In this study, a Fus3/Kss1-type mitogen-activated protein kinase (MAPK) gene MaMk1 (GenBank accession No. EFY93607) was identified in Metarhizium acridum, which encodes a member of the YERK1 subfamily. Targeted gene disruption was used to analyze the function of MaMk1 in fungal growth, conidial yield and virulence. Growth assays showed that MaMk1 disruption did not affect fungal growth and conidial yield on potato dextrose agar (PDA) plates. Bioassays by topical inoculation showed that a MaMk1-disruption mutant entirely lost its pathogenicity for the locusts, likely because of failure to penetrate the insect cuticle, which might have been caused by inability to form appressoria during infection. However, bioassays by injection showed no significant difference in virulence among the wild type (WT), Delta MaMk1 mutant and complementary transformant. Delta MaMk1 mutant failed to penetrate the cuticle outwards and sporulate on the locust cadaver. These results suggest that MaMk1 is required for penetration of the insect cuticle both into the hemocele and outside from the hemocele, but is dispensable for fungal growth in insect hemolymph. Gene expression pattern analysis showed that MaMk1 disruption downregulated expression of Mad1 and Mpl1, but did not reduce expression of Pr1 in M. acridum. (C) 2013 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available