4.5 Article

Rapamycin Inhibits Human Laryngotracheal Stenosis-derived Fibroblast Proliferation, Metabolism, and Function in Vitro

Journal

OTOLARYNGOLOGY-HEAD AND NECK SURGERY
Volume 152, Issue 5, Pages 881-888

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/0194599815573708

Keywords

human; trachea; laryngotracheal stenosis; rapamycin; fibroblasts; collagen

Funding

  1. NCI NIH HHS [P30 CA006973] Funding Source: Medline
  2. NIDCD NIH HHS [K23 DC014082] Funding Source: Medline

Ask authors/readers for more resources

Objective To determine if rapamycin inhibits the growth, function, and metabolism of human laryngotracheal stenosis (LTS)-derived fibroblasts. Study Design Controlled in vitro study. Setting Tertiary care hospital in a research university. Subjects and Methods Fibroblasts isolated from biopsies of 5 patients with laryngotracheal stenosis were cultured. Cell proliferation, histology, gene expression, and cellular metabolism of LTS-derived fibroblasts were assessed in 4 conditions: (1) fibroblast growth medium, (2) fibroblast growth medium with dimethylsulfoxide (DMSO), (3) fibroblast growth medium with 10(-10) M (low-dose) rapamycin dissolved in DMSO, and (4) fibroblast growth medium with 10(-9) M (high-dose) rapamycin dissolved in DMSO. Results The LTS fibroblast count and DNA concentration were reduced after treatment with high-dose rapamycin compared to DMSO (P = .0007) and normal (P = .0007) controls. Collagen I expression decreased after treatment with high-dose rapamycin versus control (P = .0051) and DMSO (P = .0093) controls. Maximal respiration decreased to 68.6 pMoles of oxygen/min/10 mg/protein from 96.9 for DMSO (P = .0002) and 97.0 for normal (P = .0022) controls. Adenosine triphosphate (ATP) production decreased to 66.8 pMoles from 88.1 for DMSO (P = .0006) and 83.3 for normal (P = .0003) controls. Basal respiration decreased to 78.6 pMoles from 108 for DMSO (P = .0002) and 101 for normal (P = .0014) controls. Conclusions Rapamycin demonstrated an anti-fibroblast effect by significantly reducing the proliferation, metabolism, and collagen deposition of human LTS fibroblast in vitro. Rapamycin significantly decreased oxidative phosphorylation of LTS fibroblasts, suggesting at a potential mechanism for the reduced proliferation and differentiation. Furthermore, rapamycin's anti-fibroblast effects indicate a promising adjuvant therapy for the treatment of laryngotracheal stenosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available