4.4 Article

Effect of embedded sensors on interlaminar damage in composite structures

Journal

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/1045389X11414225

Keywords

Structural health monitoring (SHM); piezoelectric sensor (PZT); delamination; finite element analysis (FEA); composite structure

Funding

  1. US Government [W911W6-08-2-0002]

Ask authors/readers for more resources

This research focuses on developing an embedded sensor system to monitor the health of a composite rotor component. To support this objective, simulations were developed to investigate the impact of sensor insertions on local structural micro-mechanics and sensor responses. In particular, the potential side-effects (e. g., delamination onset and growth) of imbedding lead zirconate titanate (PZT) piezoelectric sensors in composite structures were studied. A modeling approach for evaluating interlaminar damage under the influence of embedded PZT sensors is proposed. The approach uses finite element cohesive zone models to describe interlaminar damage between plies or at ply ends. In addition, an embedded multi-ply PZT model was developed and integrated with the damage models. The approach presented in this paper analyzes the propagation of interlaminar damage in the vicinity of sensors and quantifies the effect of sensor presence on damage growth. A parametric study was performed to understand how damage zones, the size and geometry of resin pockets, and the locations and properties of PZT sensors affected interfacial strength. Damage behavior, under the influence of an embedded PZT sensor, was examined in specimens having a configuration similar to that of a selected rotating rotorcraft component. Finally, optimal locations of embedded PZT transducers were determined for the specimen under consideration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available