4.4 Article

Segmented Reinforcement Variable Stiffness Materials for Reconfigurable Surfaces

Journal

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/1045389X10386399

Keywords

morphing; variable stiffness materials; shape memory polymer; reconfigurable surface

Ask authors/readers for more resources

Reconfigurable and morphing structures may provide a range of new functionalities such as optimization over broad operational conditions and multi-mission capability. This article introduces a new generic approach to achieving large strains in materials with high elastic moduli (5-30 GPa). The work centers on creating variable stiffness composite materials which exhibit a controllable change in elastic modulus (bending or axial) and large reversible strains (5-15%). We have performed a simulation study to better understand the implication of various geometric design parameters on the elastic and deformation behavior. Using this information, a series of prototype materials were prepared using a commercial shape memory polymer, and measurements on these materials indicate a controllable change in stiffness as a function of temperature with large reversible strain accommodation. We have fabricated and tested several design variations of laminar morphing materials which exhibit structural stiffness values of 8-12 GPa, changes in modulus of 15-77x and large reversible axial of 2-10%. Results indicate that significant controllable changes in stiffness are possible. Further, agreement between simulations and prototype material properties indicate that simulations may be used an effective screening tool to specify micromechanical design variations for specific application requirements.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available