4.8 Article

Thermodynamic and economic performances optimization of an organic Rankine cycle system utilizing exhaust gas of a large marine diesel engine

Journal

APPLIED ENERGY
Volume 149, Issue -, Pages 1-12

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2015.03.083

Keywords

ORC; Waste heat recovery; Optimal; Thermodynamic performance; Economic performance; Working fluid

Funding

  1. Engineering Division of the Ministry of Science and Technology, Republic of China [MOST 103-2221-E-022-021]

Ask authors/readers for more resources

The aim of this study is to investigate the thermodynamic and economic performances optimization for an ORC system recovering the waste heat of exhaust gas from a large marine diesel engine of the merchant ship. Parameters of net power output index and thermal efficiency are used to represent the economic and thermodynamic performances, respectively. The maximum net power output index and thermal efficiency are obtained and the corresponding turbine inlet pressure, turbine outlet pressure, and effectiveness of pre-heater of the ORC system are also evaluated using R1234ze, R245fa, R600, and R600a. Furthermore, the analyses of the effects of turbine inlet temperature and cooling water temperature on the optimal economic and thermodynamic performances of the ORC system are carried out. The results show that R245fa performs the most satisfactorily followed by R600, R600a, and R1234ze under optimal economic performance. However, in the optimal thermodynamic performance evaluations, R1234ze has the largest thermal efficiency followed by R600a, R245fa, and R600. The payback periods will decrease from 0.5 year for R245fa to 0.65 year for R1234ze respectively as the system is equipped with a pre-heater. In addition, compared with conventional diesel oil feeding, the proposed ORC system can reduce 76% CO2 emission per kilowatt-hour. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available