4.7 Article

Overexpression of OsPIL15, a phytochromeinteracting factor- like protein gene, represses etiolated seedling growth in rice

Journal

JOURNAL OF INTEGRATIVE PLANT BIOLOGY
Volume 56, Issue 4, Pages 373-387

Publisher

WILEY
DOI: 10.1111/jipb.12137

Keywords

Auxin; cell wall; etiolated seedling; rice; photomorphogenesis; phytochrome-interacting factor

Funding

  1. National Natural Science Foundation of China [31270232, 30971744]
  2. Shandong Natural Science Funds for Distinguished Young Scholars [JQ200911]

Ask authors/readers for more resources

Phytochrome-interacting factors (PIFs) regulate an array of developmental responses ranging from seed germination to vegetational architecture in Arabidopsis. However, information regarding the functions of the PIF family in monocots has not been widely reported. Here, we investigate the roles of OsPIL15, a member of the rice (Oryza sativa L. cv. Nipponbare) PIF family, in regulating seedling growth. OsPIL15 encodes a basic helix-loop-helix factor localized in the nucleus. OsPIL15-OX seedlings exhibit an exaggerated shorter aboveground part and undeveloped root system relative to wild-type seedlings, suggesting that OsPIL15 represses seedling growth in the dark. Microarray analysis combined with gene ontology analysis revealed that OsPIL15 represses a set of genes involved in auxin pathways and cell wall organization or biogenesis. Given the important roles of the auxin pathway and cell wall properties in controlling plant growth, we speculate that OsPIL15 represses seedling growth likely by regulating the auxin pathway and suppressing cell wall organization in etiolated rice seedlings. Additionally, exposure to red light or far-red light relieved growth retardation and promoted seedling elongation in the OsPIL15-OX lines, despite higher levels of OsPIL15 transcripts under red light and far-red light than in the dark. These results suggest that light regulation of OsPIL15 expression is probably involved in photomorphogenesis in rice.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available