4.5 Article

Physicochemical conditions and metal ion profiles in the gut of the fungus-growing termite Odontotermes formosanus

Journal

JOURNAL OF INSECT PHYSIOLOGY
Volume 58, Issue 10, Pages 1368-1375

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jinsphys.2012.07.012

Keywords

Microelectrodes; Oxygen; Intestinal pH; Redox potential; Hydrogen; Metal ions

Funding

  1. Natural Science Foundation of China [31170611]
  2. Zhejiang Provincial Natural Science Foundation of China [Z3100211]
  3. Priority Academic Program Development of Jiangsu Higher Education Institutions

Ask authors/readers for more resources

The physicochemical conditions in an insect's gut microenvironment have been reported to play an important role in food processing and metabolisms. In this study, the profiles of oxygen, pH, redox potentials, and hydrogen in the isolated guts of the fungus-growing termite, Odontotermes formosanus Shiraki, were investigated with a microeletrode system. Compared with those in other termites, O. formosanus exhibited a relatively lower oxygen partial pressures in its gut system ranging from 0 to 8.6 kPa. The pH profile in the different gut compartments was neutral (pH 6.1-7.4) except in the rectum region. The average redox potentials at the center of each gut region (except rectum) were high and ranged from approximately +70 to +310 mV. Especially, as the central intermediate during lignocellulose degradation, hydrogen partial pressures in the hindgut paunch lumen were recorded as high as 10.4 kPa. Furthermore, thirteen metal ion concentrations in the termite's gut system, nest symbiotic fungal combs, as well as the nest soil samples were evaluated with Inductively Coupled Plasma Mass Spectrometry (ICP-MS), which indicated that six metal ions (K, Mg, Mn, Ba, Se, and Mo) out of 13 ions recorded in the major digestive tract regions show some significant differences in their spatial distributions. A significant enrichment of some metal ions was also observed in the rectum, fungal combs, and the nest soil samples. The lower oxygen profiles, neutral pH, higher redox potentials, and higher hydrogen accumulation with the characterized spatial distributions for metal ions in the digestive tract of O. formosanus, highlighted the most important distinctiveness of the fungus-growing termites in its gut microenvironments, suggesting that the unique structure and functions of the intestinal ecosystem may present within its gut. (C) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available