4.5 Article

Genes encoding phospholipases A2 mediate insect nodulation reactions to bacterial challenge

Journal

JOURNAL OF INSECT PHYSIOLOGY
Volume 56, Issue 3, Pages 324-332

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jinsphys.2009.11.008

Keywords

Immunity; Eicosanoid; Phospholipase A(2); Tribolium castaneum

Funding

  1. Rural Development Administration
  2. Ministry of Education, Science and Technology, Korea
  3. National Research Foundation of Korea [핵06B2511] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

We propose that expression of four genes encoding secretory phospholipases A(2) (sPLA(2)) mediates insect nodulation responses to bacterial infection. Nodulation is the quantitatively predominant cellular defense reaction to bacterial infection. This reaction is mediated by eicosanoids, the biosynthesis of which depends on PLA(2)-catalyzed hydrolysis of arachidonic acid (AA) from cellular phospholipids. Injecting late instar larvae of the red flour beetle, Tribolium castaneum, with the bacterium, Escherichia coli, stimulated nodulation reactions and sPLA(2) activity in time- and dose-related manners. Nodulation was inhibited by pharmaceutical inhibitors of enzymes involved in eicosanoid biosynthesis, and the inhibition was rescued by AA. We cloned five genes encoding sPLA(2) and expressed them in E. coli cells to demonstrate these genes encode catalytically active sPLA(2)s. The recombinant sPLA(2)s were inhibited by sPLA(2) inhibitors. Injecting larvae with double-stranded RNAs specific to each of the five genes led to reduced expression of the corresponding sPLA(2) genes and to reduced nodulation reactions to bacterial infections for four of the five genes. The reduced nodulation was rescued by AA, indicating that expression of four genes encoding sPLA(2)s mediates nodulation reactions. A polyclonal antibody that reacted with all five sPLA(2)s showed the presence of the sPLA(2) enzymes in hemocytes and revealed that the enzymes were more closely associated with hemocyte plasma membranes following infection. Identifying specific sPLA(2) genes that mediate nodulation reactions strongly supports our hypothesis that sPLA(2)s are central enzymes in insect cellular immune reactions. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available