4.6 Article

Metal specificity in DNA damage prevention by sulfur antioxidants

Journal

JOURNAL OF INORGANIC BIOCHEMISTRY
Volume 102, Issue 12, Pages 2036-2042

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jinorgbio.2008.06.010

Keywords

Antioxidant; Sulfur; Reactive oxygen species; DNA damage

Funding

  1. American Heart Association [0665344 U]
  2. Clemson University Research Grant Committee

Ask authors/readers for more resources

Metals such as Cu-I and Fe-II generate hydroxyl radical ((OH)-O-center dot) by reducing endogenous hydrogen peroxide (H2O2). Because antioxidants can ameliorate metal-mediated oxidative damage, we have quantified the ability of glutathione, a primary intracellular antioxidant, and other biological sulfur-containing compounds to inhibit metal-mediated DNA damage caused hydroxyl radical. In the CuI/H2O2 system, six sulfur compounds, including both reduced and oxidized glutathione, inhibited DNA damage with IC50 values ranging from 3.4 to 12.4 mu M. Glutathione and 3-carboxypropyl disulfide also demonstrated significant antioxidant activity with Fell and H2O2. Additional gel electrophoresis and UV-vis spectroscopy studies confirm that antioxidant activity for sulfur compounds in the Cu-I system is attributed to metal coordination, a previously unexplored mechanism. The antioxidant mechanism for sulfur compounds in the Fe-II system, however, is unlike that of Cu-I. Our results demonstrate that glutathione and other sulfur compounds are potent antioxidants capable of preventing metal-mediated oxidative DNA damage at well below their biological concentrations. This novel metal-binding antioxidant mechanism may play a significant role in the antioxidant behavior of these sulfur compounds and help refine understanding of glutathione function in vivo. (C) 2008 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available