4.6 Article

Comparing metabolic effects of six different commercial trivalent chromium compounds

Journal

JOURNAL OF INORGANIC BIOCHEMISTRY
Volume 102, Issue 11, Pages 1986-1990

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jinorgbio.2008.07.012

Keywords

Chromium(III) salts; Blood pressure; insulin sensitivity; Lipid peroxidation; DNA damage

Ask authors/readers for more resources

Recent reports provide cogent evidence that the average individual becomes chromium deficient with age. Unfortunately, chromium deficiency is strongly associated with many aspects of the Metabolic Syndrome, including insulin resistance and type 2 diabetes. Since replacement of chromium, per os, often ameliorates many deleterious manifestations associated with insulin resistance and diabetes, it is not surprising that many different, commercial trivalent chromium compounds are available on the market. However, previous reports have shown that the form of trivalent chromium (negative charges) can influence effectiveness markedly. We compared various commercial forms of trivalent chromium commonly used alone or in formulations, to examine whether they are equally effective and non-toxic. In the first study, five different chromium products were examined - citrate, amino acid chelate (AAC), chelavite, polynicotinate (NBC), and nicotinate. In the second study, effects of NBC and picolinate were assessed. Results demonstrated that only chelavite and NBC improved insulin sensitivity, and only NBC decreased systolic blood pressure (SBP) significantly. In the second study, both picolinate and NBC significantly decreased SBP compared to control. NBC and picolinate decreased malonyldialdehyde concentrations (free radical formation) and DNA fragmentation in hepatic and renal tissues. No evidence of adverse effects was noted with any of the compounds tested. In conclusion, while all the trivalent chromium compounds tested seem safe, only three enhanced insulin sensitivity (NBC, chelavite, and picolinate) and only two decreased SBP significantly (NBC and picolinate). Furthermore, both NBC and picolinate were protective in lessening free radical formation and DNA damage in the liver and kidneys. (C) 2008 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available