4.5 Article

Synthesis and Characterization of SnO2/polypyrrole Nanocomposites by Hydrothermal Reverse Microemulsion

Publisher

SPRINGER
DOI: 10.1007/s10904-013-9964-0

Keywords

Reverse microemulsion; Hydrothermal synthesis; Tin dioxide; Polypyrrole; Nanocomposites

Ask authors/readers for more resources

Nanostructured tin dioxide (SnO2) was prepared by hydrothermal reverse microemulsion. The typical quaternary microemulsion was formed with surfactant cetyltrimethyl ammonium bromide, cosurfactant n-pentanol, n-hexane, and water. Tin chloride and urea was used as the starting material to synthesize SnO2 nanoparticles under hydrothermal conditions. After that, pyrrole monomer was added into the reverse microemulsion system and polymerized at 0 A degrees C using ferric chloride (FeCl3) as the oxidant to synthesize SnO2/polypyrrole nanocomposites. The products were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), UV-Vis spectroscopy, transmission electron microscopy (TEM) and scanning electron microscope (SEM). The XRD patterns suggested that polypyrrole (PPy) did not modify the crystal structure of SnO2. The particle size of SnO2 and SnO2/PPy was calculated by XRD as 3.9 and 3.6 nm, respectively. FT-IR and UV-Vis spectra proved that SnO2 was successfully enwrapped by PPy with an interaction between them. TEM and SEM analysis showed that SnO2 was enwrapped in micro-porous PPy. However, the diameter of the composites observed by TEM and SEM images was increased compared with the results calculated by XRD due to the agglomeration of nanoparticles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available