4.4 Article

Rapid Neutrophil Destruction following Phagocytosis of Staphylococcus aureus

Journal

JOURNAL OF INNATE IMMUNITY
Volume 2, Issue 6, Pages 560-575

Publisher

KARGER
DOI: 10.1159/000317134

Keywords

Neutrophils; Bacterial infections; Host defense; Staphylococcus aureus

Categories

Funding

  1. National Institutes of Allergy and Infectious Diseases, National Institutes of Health
  2. NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES [ZIAAI000646, ZICAI001052, ZIAAI000900] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Mechanisms underlying the enhanced virulence phenotype of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) are incompletely defined, but presumably include evasion of killing by human polymorphonuclear leukocytes (PMNs or neutrophils). To better understand this phenomenon, we investigated the basis of rapid PMN lysis after phagocytosis of USA300, a prominent CA-MRSA strain. Survival of USA300 clinical isolates after phagocytosis ultimately resulted in neutrophil lysis. PMNs containing ingested USA300 underwent morphological changes consistent with apoptosis, but lysed rapidly thereafter (within 6 h), whereas cells undergoing FAS-mediated apoptosis or phagocytosis-induced cell death remained intact. Phagosome membranes remained intact until the point of PMN destruction, suggesting lysis was not caused by escape of S. aureus from phagosomes or the cytolytic action of pore-forming toxins. Microarray analysis of the PMN transcriptome after phagocytosis of representative community-associated S. aureus and healthcare-associated MRSA strains revealed changes unique to community-associated S. aureus strains, such as upregulation of transcripts involved in regulation of calcium homeostasis. Collectively, the data suggest that neutrophil destruction after phagocytosis of USA300 is in part a form of programmed necrosis rather than direct lysis by S. aureus pore-forming toxins. We propose that the ability of CA-MRSA strains to induce programmed necrosis of neutrophils is a component of enhanced virulence. Copyright (C) 2010 S. Karger AG, Basel

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available