4.7 Article

Expression in Yeast Links Field Polymorphisms in PfATP6 to in Vitro Artemisinin Resistance and Identifies New Inhibitor Classes

Journal

JOURNAL OF INFECTIOUS DISEASES
Volume 208, Issue 3, Pages 468-478

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1093/infdis/jit171

Keywords

Artemisinins; PfATP6; yeast; malaria; Plasmodium falciparum; drug resistance; thaperoxides; cyclopiazonic acid; desferioxamine

Funding

  1. EU FP7 Marie Curie-funded Initial Training Network InterMal [215281-2]
  2. EU-FP7 MALSIG programme
  3. European Union Seventh Framework Programme [304948 - NANOMAL]
  4. MRC [MR/K011782/1, G0900109] Funding Source: UKRI
  5. Medical Research Council [MR/K011782/1, G0900109] Funding Source: researchfish

Ask authors/readers for more resources

Background. The mechanism of action of artemisinins against malaria is unclear, despite their widespread use in combination therapies and the emergence of resistance. Results. Here, we report expression of PfATP6 (a SERCA pump) in yeast and demonstrate its inhibition by artemisinins. Mutations in PfATP6 identified in field isolates (such as S769N) and in laboratory clones (such as L263E) decrease susceptibility to artemisinins, whereas they increase susceptibility to unrelated inhibitors such as cyclopiazonic acid. As predicted from the yeast model, Plasmodium falciparum with the L263E mutation is also more susceptible to cyclopiazonic acid. An inability to knockout parasite SERCA pumps provides genetic evidence that they are essential in asexual stages of development. Thaperoxides are a new class of potent antimalarial designed to act by inhibiting PfATP6. Results in yeast confirm this inhibition. Conclusions. The identification of inhibitors effective against mutated PfATP6 suggests ways in which artemisinin resistance may be overcome.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available