4.5 Article

Development of a whole-cell biocatalyst with NADPH regeneration system for biosulfoxidation

Journal

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s10295-013-1288-0

Keywords

Phenyl methyl sulfoxide; Cyclohexanone monooxygenase; Formate dehydrogenase; NADPH-regeneration; Whole-cell biocatalyst

Funding

  1. Science and Technology Department of Hangzhou, China [20101131N06]

Ask authors/readers for more resources

A formate dehydrogenase gene (fdh) originated from Candida boidinii was co-expressed in E. coli BL21 (DE3) with the cyclohexanone monooxygenase gene (chmo) cloned from Acinetobacter calcoaceticus NCIMB 9871. The co-expression system was then used as a whole-cell biocatalyst to synthesize chiral phenyl methyl sulfoxide (PMSO) from thioanisole (PMS) and the reaction conditions were investigated. When the initial concentration of PMS was 20 mM, the specific productivity of PMSO in this system was 2.07 mu mol g(-1) cw min(-1) (cw: wet cell weight) and the ee value for the R-sulfoxide was 99 %. In contrast, when chmo was the only gene expressed in E. coli, the specific productivity of PMSO was 0.053 mu mol g(-1) cw min(-1) with no exact enantioselectivity. Further determination of NADPH concentration in the whole-cell catalysts suggested that co-expression of fdh with chmo significantly improved NADPH supply. Thus, this whole-cell biocatalyst system is highly advantageous for the synthesis of optically pure R-sulfoxide.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available