4.5 Article

A low molecular mass cutinase of Thielavia terrestris efficiently hydrolyzes poly(esters)

Journal

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s10295-012-1222-x

Keywords

Cutinase; Thielavia terrestris; Characterization; Organic solvent; Ester polymer degradation

Funding

  1. National High Technology Research and Development Program of China (863 Program) [2011AA100905]

Ask authors/readers for more resources

A low molecular mass cutinase (designated TtcutA) from Thielavia terrestris was purified and biochemically characterized. The thermophilic fungus T. terrestris CAU709 secreted a highly active cutinase (90.4 U ml(-1)) in fermentation broth containing wheat bran as the carbon source. The cutinase was purified 19-fold with a recovery yield of 4.8 %. The molecular mass of the purified TtcutA was determined as 25.3 and 22.8 kDa using SDS-PAGE and gel filtration, respectively. TtcutA displayed optimal activity at pH 4.0 and 50 A degrees C. It was highly stable up to 65 A degrees C and in the broad pH range 2.5-10.5. Extreme stability in high concentrations (80 %, v/v) of solvents such as methanol, ethanol, acetone, acetonitrile, isopropanol, and dimethyl sulfoxide was observed for the enzyme. The K (m) values for this enzyme towards p-nitrophenyl (pNP) acetate, pNP butyrate, and pNP caproate were 7.7, 1.0, and 0.52 mM, respectively. TtcutA was able to efficiently degrade various ester polymers, including cutin, polyethylene terephthalate (PET), polycaprolactone (PCL), and poly(butylene succinate) (PBS) at hydrolytic rates of 3 mu mol h(-1) mg(-1) protein, 1.1 mg h(-1) mg(-1) protein, 203.6 mg h(-1) mg(-1) protein, and 56.4 mg h(-1) mg(-1) protein, respectively. Because of these unique biochemical properties, TtcutA of T. terrestris may be useful in various industrial applications in the future.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available