4.5 Article

Engineering industrial Saccharomyces cerevisiae strains for xylose fermentation and comparison for switchgrass conversion

Journal

JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY
Volume 38, Issue 9, Pages 1193-1202

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s10295-010-0896-1

Keywords

Xylose; Bioethanol; Switchgrass; Saccharomyces; Industrial yeast

Ask authors/readers for more resources

Saccharomyces' physiology and fermentation-related properties vary broadly among industrial strains used to ferment glucose. How genetic background affects xylose metabolism in recombinant Saccharomyces strains has not been adequately explored. In this study, six industrial strains of varied genetic background were engineered to ferment xylose by stable integration of the xylose reductase, xylitol dehydrogenase, and xylulokinase genes. Aerobic growth rates on xylose were 0.04-0.17 h(-1). Fermentation of xylose and glucose/xylose mixtures also showed a wide range of performance between strains. During xylose fermentation, xylose consumption rates were 0.17-0.31 g/l/h, with ethanol yields 0.18-0.27 g/g. Yields of ethanol and the metabolite xylitol were positively correlated, indicating that all of the strains had downstream limitations to xylose metabolism. The better-performing engineered and parental strains were compared for conversion of alkaline pretreated switchgrass to ethanol. The engineered strains produced 13-17% more ethanol than the parental control strains because of their ability to ferment xylose.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available