4.5 Article

Analysis and comparison of the bacterial community in fermented grains during the fermentation for two different styles of Chinese liquor

Journal

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s10295-008-0323-z

Keywords

fermented grains; 16S rRNA gene; DGGE; cloning library; microorganism diversity

Ask authors/readers for more resources

Bacterial populations in fermented grains during fermentation may play important roles in Chinese liquor flavor. PCR-based denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene library analysis were performed to analyze the bacterial community structure of two styles of liquor. The results of DGGE profiles showed that bacterial diversity decreased with the fermentation process and Lactobacillus acetotolerans became the predominant species at the end of the fermentation. But the obvious differences of bacterial community appeared in the middle stage of two styles of liquor fermentation, in which the different upstream production techniques were used. Moreover, 16S rRNA gene libraries of two styles were constructed. A total of 125 and 107 clones, chosen from two libraries, were grouped into 46 and 49 operational taxonomic units (OTUs) by amplified ribosomal DNA restriction analysis. According to sequencing results of clones, the predominant bacteria in strong aroma style fermented grains were those from the class Bacilli, Bacteroidetes, and Clostridia, whereas the predominant bacteria in fermented grains of roasted sesame aroma style belonged to Bacilli, Flavobacteria, and Gammaproteobacteria. Molecular analysis of the bacterial diversity of the liquor fermentation will benefit the analysis of important microorganisms playing key roles in the formation of liquor flavor components.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available