4.6 Article

Unintentional Flow of Alloying Elements in Steel during Recycling of End-of-Life Vehicles

Journal

JOURNAL OF INDUSTRIAL ECOLOGY
Volume 18, Issue 2, Pages 242-253

Publisher

WILEY-BLACKWELL
DOI: 10.1111/jiec.12095

Keywords

flow analysis (WIO-MFA); iron and steel scrap; industrial ecology; waste input output material; metal recycling; end-of-life vehicles (ELVs); material flow analysis (MFA)

Funding

  1. Japan Society for the Promotion of Science [KAKENHI 23686131, 258801]
  2. Iron and Steel Institute of Japan
  3. Research Institute of Science and Technology for Society of the Japan Science and Technology Agency (JST-RISTEX)
  4. Grants-in-Aid for Scientific Research [23686131, 13J08801] Funding Source: KAKEN

Ask authors/readers for more resources

Alloying elements in steel add a wide range of valuable properties to steel materials that are indispensable for the global economy. However, they are likely to be effectively irretrievably blended into the steel when recycled because of (among other issues) the lack of information about the composition of the scrap. This results in the alloying elements dissipating in slag during steelmaking and/or becoming contaminants in secondary steel. We used the waste input-output material flow analysis model to quantify the unintentional flows of alloying elements (i.e., chromium, nickel, and molybdenum) that occur in steel materials and that result from mixing during end-of-life (EOL) processes. The model can be used to predict in detail the flows of ferrous materials in various phases, including the recycling phase by extending steel, alloying element source, and iron and steel scrap sectors. Application of the model to Japanese data indicates the critical importance of the recycling of EOL vehicles (ELVs) in Japan because passenger cars are the final destination of the largest share of these alloying elements. However, the contents of alloying elements are rarely considered in current ELV recycling. Consequently, the present study demonstrates that considerable amounts of alloying elements, which correspond to 7% to 8% of the annual consumption in electric arc furnace (EAF) steelmaking, are unintentionally introduced into EAFs. This result suggests the importance of quality-based scrap recycling for efficient management of alloying elements.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available