4.8 Article

Iron oxide looping for natural gas conversion in a countercurrent moving bed reactor

Journal

APPLIED ENERGY
Volume 157, Issue -, Pages 338-347

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2015.06.029

Keywords

Chemical looping combustion; Oxygen carrier; Natural gas; Energy conversion; Carbon capture

Ask authors/readers for more resources

Chemical looping technologies have the potential to reduce the natural-gas conversion cost in a carbon-constrained scenario. Given the increasing importance of natural gas to global energy supply, this work investigates the application of an iron oxide based chemical looping technology for natural gas conversion. A thermodynamic criterion for selecting iron oxide based oxygen carrier material and designing the reaction system is developed using an adapted Ellingham diagram. Equilibrium modeling for detailed thermodynamic analysis is conducted for verifying the Ellingham diagram analysis. The thermodynamic equilibrium model also establishes a system baseline performance, and experimental proof of concept bench-scale demonstration is investigated. The bench-scale testing is used to characterize the effect of parameters like solids to gas ratio and temperature of the reactor on system performance. An optimal set of operating conditions is identified for further testing on a larger scale. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available