4.6 Article

Activation of the STING Adaptor Attenuates Experimental Autoimmune Encephalitis

Journal

JOURNAL OF IMMUNOLOGY
Volume 192, Issue 12, Pages 5571-5578

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.1303258

Keywords

-

Categories

Funding

  1. National Institutes of Health [AI83005, AI103347]
  2. Juvenile Diabetes Research Foundation
  3. Sao Paulo Research Foundation

Ask authors/readers for more resources

Cytosolic DNA sensing activates the stimulator of IFN genes (STING) adaptor to induce IFN type I (IFN-alpha beta) production. Constitutive DNA sensing to induce sustained STING activation incites tolerance breakdown, leading to autoimmunity. In this study, we show that systemic treatments with DNA nanoparticles (DNPs) induced potent immune regulatory responses via STING signaling that suppressed experimental autoimmune encephalitis (EAE) when administered to mice after immunization with myelin oligodendrocyte glycoprotein (MOG), at EAE onset, or at peak disease severity. DNP treatments attenuated infiltration of effector T cells into the CNS and suppressed innate and adaptive immune responses to myelin oligodendrocyte glycoprotein immunization in spleen. Therapeutic responses were not observed in mice treated with cargo DNA or cationic polymers alone, indicating that DNP uptake and cargo DNA sensing by cells with regulatory functions was essential for therapeutic responses to manifest. Intact STING and IFN-alpha beta receptor genes, but not IFN-gamma receptor genes, were essential for therapeutic responses to DNPs to manifest. Treatments with cyclic diguanylate monophosphate to activate STING also delayed EAE onset and reduced disease severity. Therapeutic responses to DNPs were critically dependent on IDO enzyme activity in hematopoietic cells. Thus, DNPs and cyclic diguanylate monophosphate attenuate EAE by inducing dominant T cell regulatory responses via the STING/IFN-alpha beta/IDO pathway that suppress CNS-specific autoimmunity. These findings reveal dichotomous roles for the STING/IFN-alpha beta pathway in either stimulating or suppressing autoimmunity and identify STING-activating reagents as a novel class of immune modulatory drugs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available