4.6 Article

Identification of a Phage-Encoded Ig-Binding Protein from Invasive Neisseria meningitidis

Journal

JOURNAL OF IMMUNOLOGY
Volume 191, Issue 6, Pages 3287-3296

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.1301153

Keywords

-

Categories

Funding

  1. National Institutes of Health/National Institute of Allergy and Infectious Diseases Grant [AI064314]
  2. National Institutes of Health/National Center for Research Resources Grants [CO6 RR-16226, S10RR025472]
  3. Children's Hospital Branches
  4. Jennifer Leigh Wells Family

Ask authors/readers for more resources

Ig-binding proteins are employed by a variety of organisms to evade the immune system. To our knowledge, we now report for the first time that meningococcal strains from several capsular groups exhibit Ig-binding activity that is dependent on human serum factors. A protein mediating Ig binding was identified as T and B cell-stimulating protein B (TspB) by immunoprecipitation and by mass spectroscopic analysis of tryptic peptides. Recombinant TspB and derivatives verified Ig binding, with a preference for human IgG2 Fc, and localized the IgG-binding region to a highly conserved subdomain of TspB. Antiserum produced in mice against the conserved subdomain detected the presence of TspB on the cell surface by flow cytometry when bacteria were grown in the presence of human serum. By fluorescence microscopy, we observed formation of an extracellular matrix having characteristics of a biofilm containing TspB, human IgG, DNA, and large aggregates of bacteria. TspB is encoded by gene ORF6 in prophage DNA, which others have shown is associated with invasive meningococcal strains. Knocking out ORF6 genes eliminated IgG binding and formation of large bacterial aggregates in biofilm. Reintroduction of a wild-type ORF6 gene by phage transduction restored the phenotype. The results show that TspB mediated IgG binding and aggregate/biofilm formation triggered by factors in human serum. As has been observed for other Ig-binding proteins, the activities mediated by TspB may provide protection against immune responses, which is in accordance with the association of prophage DNA carrying ORF6 with invasive meningococcal strains.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available