4.6 Article

TLR2-Mediated Production of IL-27 and Chemokines by Respiratory Epithelial Cells Promotes Bleomycin-Induced Pulmonary Fibrosis in Mice

Journal

JOURNAL OF IMMUNOLOGY
Volume 187, Issue 8, Pages 4007-4017

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.1101654

Keywords

-

Categories

Funding

  1. National Research Foundation of Korea
  2. Korean government (Ministry of Education, Science and Technology) [2010-0017890]
  3. Seoul National University Hospital [03-2009-0040]
  4. National Research Foundation of Korea [2010-0017890] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

Idiopathic pulmonary fibrosis is a fatal disease characterized by progressive destruction of the lung. Although TLR2 bridges innate and adaptive immunity by sensing tissue damage, its role in pulmonary fibrosis remains unclear. To address this issue, TLR2(-/-) and WT mice were examined for bleomycin-induced pulmonary fibrosis (BIPF). Flow cytometric and immunohistochemical analysis revealed that TLR2 expression in bronchial epithelial and immune cells of the lungs was upregulated in WT mice during BIPF. Levels of IL-27, TGF-b, chemokines, and hydroxyproline were lower in lungs of TLR2(-/-) mice than in those of WT mice, but IL17 levels were higher in TLR2(-/-) mice. In in vivo experiments using bone marrow-chimeric mice, TLR2 expression on respiratory epithelial cells, rather than immune cells, induced IL-27 and chemokine production in the lungs, further stimulating BIPF. This effect of TLR2 depended on IRF complexes and MyD88. BIPF was more severe in IL-17A(-/-) mice and in TLR2(-/-) mice treated with anti-IL-17 mAb than in TLR2(-/-) and WT mice. Furthermore, IL-27 blockade in WT mice reduced hydroxyproline levels by enhancing IL-17 production, whereas the treatment of TLR2(-/-) mice with a chemokine mixture increased hydroxyproline levels by recruiting inflammatory cells into the lungs. TLR2 signaling promotes BIPF by inducing IL-27 and chemokine production by respiratory epithelial cells, thereby inhibiting IL-17 production and recruiting inflammatory cells into the lungs. The Journal of Immunology, 2011, 187: 4007-4017.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available