4.6 Article

Regulatory B Cells (B10 Cells) Have a Suppressive Role in Murine Lupus: CD19 and B10 Cell Deficiency Exacerbates Systemic Autoimmunity

Journal

JOURNAL OF IMMUNOLOGY
Volume 184, Issue 9, Pages 4801-4809

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.0902385

Keywords

-

Categories

Funding

  1. Ministry of Education. Science, and Culture of Japan
  2. National Institutes of Health [AI56363, CA105001, CA96547]

Ask authors/readers for more resources

B cells play critical roles in the pathogenesis of lupus. To examine the influence of B cells on disease pathogenesis in a murine lupus model, New Zealand Black and New Zealand White F-1 hybrid (NZB/W) mice were generated that were deficient for CD19 (CD19(-/-) NZB/W mice), a B cell-specific cell surface molecule that is essential for optimal B cell signal transduction. The emergence of anti-nuclear Abs was significantly delayed in CD19(-/-) NZB/W mice compared with wild type NZB/W mice. However, the pathologic manifestations of nephritis appeared significantly earlier, and survival was significantly reduced in CD19(-/-) NZB/W mice compared with wild type mice. These results demonstrate both disease-promoting and protective roles for B cells in lupus pathogenesis. Recent studies have identified a potent regulatory B cell subset (B10 cells) within the rare CD1d(hi) CD5(+) B cell subset of the spleen that regulates acute inflammation and autoimmunity through the production of IL-10. In wild type NZB/W mice, the CD1d(hi)CD5(+)B220(+) B cell subset that includes B10 cells was increased by 2.5-fold during the disease course, whereas CD19(-/-) NZB/W mice lacked this CD1d(hi)CD5(+) regulatory B cell subset. However, the transfer of splenic CD1d(hi)CD5(+) B cells from wild type NZB/W mice into CD19(-/-) NZB/W recipients significantly prolonged their survival. Furthermore, regulatory T cells were significantly decreased in CD19(-/-) NZB/W mice, but the transfer of wild type CD1d(hi)CD5(+) B cells induced T regulatory cell expansion in CD19(-/-) NZB/W mice. These results demonstrate an important protective role for regulatory B10 cells in this systemic autoimmune disease. The Journal of Immunology, 2010, 184: 4801-4809.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available