4.6 Article

A Novel Mechanism of Rapid Nuclear Neutrophil Extracellular Trap Formation in Response to Staphylococcus aureus

Journal

JOURNAL OF IMMUNOLOGY
Volume 185, Issue 12, Pages 7413-7425

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.1000675

Keywords

-

Categories

Funding

  1. Alberta Heritage Foundation for Medical Research

Ask authors/readers for more resources

Neutrophil extracellular traps (NETs) are webs of DNA covered with antimicrobial molecules that constitute a newly described killing mechanism in innate immune defense. Previous publications reported that NETs take up to 3-4 h to form via an oxidant-dependent event that requires lytic death of neutrophils. In this study, we describe neutrophils responding uniquely to Staphylococcus aureus via a novel process of NET formation that did not require neutrophil lysis or even breach of the plasma membrane. The multilobular nucleus rapidly became rounded and condensed. During this process, we observed the separation of the inner and outer nuclear membranes and budding of vesicles, and the separated membranes and vesicles were filled with nuclear DNA. The vesicles were extruded intact into the extracellular space where they ruptured, and the chromatin was released. This entire process occurred via a unique, very rapid (5-60 min), oxidant-independent mechanism. Mitochondrial DNA constituted very little if any of these NETs. They did have a limited amount of proteolytic activity and were able to kill S. aureus. With time, the nuclear envelope ruptured, and DNA filled the cytoplasm presumably for later lytic NET production, but this was distinct from the vesicular release mechanism. Panton-Valentine leukocidin, autolysin, and a lipase were identified in supernatants with NET-inducing activity, but Panton-Valentine leukocidin was the dominant NET inducer. We describe a new mechanism of NET release that is very rapid and contributes to trapping and killing of S. aureus. The Journal of Immunology, 2010, 185: 7413-7425.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available