4.6 Article

L-Arginine Deprivation Regulates Cyclin D3 mRNA Stability in Human T Cells by Controlling HuR Expression

Journal

JOURNAL OF IMMUNOLOGY
Volume 185, Issue 9, Pages 5198-5204

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.1001224

Keywords

-

Categories

Funding

  1. National Cancer Institute, National Institutes of Health [CA82689, CA107974]
  2. National Institutes of Health, National Center for Research Resources (Centers of Biomedical Research Excellence) [P20RR021970]

Ask authors/readers for more resources

Myeloid-derived suppressor cells are a major mechanism of tumor-induced immune suppression in cancer. Arginase I-producing myeloid-derived suppressor cells deplete L-arginine (L-Arg) from the microenvironment, which arrests T cells in the G(0)-G(1) phase of the cell cycle. This cell cycle arrest correlated with an inability to increase cyclin D3 expression resulting from a decreased mRNA stability and an impaired translation. We sought to determine the mechanisms leading to a decreased cyclin D3 mRNA stability in activated T cells cultured in medium deprived of L-Arg. Results show that cyclin D3 mRNA instability induced by L-Arg deprivation is dependent on response elements found in its 3'-untranslated region (UTR). RNA-binding protein HuR was found to be increased in T cells cultured in medium with L-Arg and bound to the 3'-untranslated region of cyclin D3 mRNA in vitro and endogenously in activated T cells. Silencing of HuR expression significantly impaired cyclin D3 mRNA stability. L-Arg deprivation inhibited the expression of HuR through a global arrest in de novo protein synthesis, but it did not affect its mRNA expression. This alteration is dependent on the expression of the amino acid starvation sensor general control nonderepressible 2 kinase. These data contribute to an understanding of a central mechanism by which diseases characterized by increased arginase I production may cause T cell dysfunction. The Journal of Immunology, 2010, 185: 5198-5204.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available