4.6 Article

Dendritic Cells Distinguish Individual Chemokine Signals through CCR7 and CXCR4

Journal

JOURNAL OF IMMUNOLOGY
Volume 186, Issue 1, Pages 53-61

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.1002358

Keywords

-

Categories

Funding

  1. Merck Co., Inc.
  2. National Institutes of Health [AI082292, AI071302]
  3. NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES [R01AI071302, R01AI082292] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Dendritic cells (DCs) respond to chemotactic signals to migrate from sites of infection to secondary lymphoid organs where they initiate the adaptive immune response. The key chemokines directing their migration are CCL19, CCL21, and CXCL12, but how signals from these chemokines are integrated by migrating cells is poorly understood. Using a microfluidic device, we presented single and competing chemokine gradients to murine bone-marrow derived DCs in a controlled, time-invariant microenvironment. Experiments performed with counter-gradients revealed that CCL19 is 10-100-fold more potent than CCL21 or CXCL12. Interestingly, when the chemoattractive potencies of opposing gradients are matched, cells home to a central region in which the signals from multiple chemokines are balanced; in this region, cells are motile but display no net displacement. Actin and myosin inhibitors affected the speed of crawling but not directed motion, whereas pertussis toxin inhibited directed motion but not speed. These results provide fundamental insight into the processes that DCs use to migrate toward and position themselves within secondary lymphoid organs. The Journal of Immunology, 2011, 186: 53-61.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available