4.6 Article

Chronic Cigarette Smoke Exposure Primes NK Cell Activation in a Mouse Model of Chronic Obstructive Pulmonary Disease

Journal

JOURNAL OF IMMUNOLOGY
Volume 184, Issue 8, Pages 4460-4469

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.0903654

Keywords

-

Categories

Funding

  1. National Institutes of Health [R01 ES015036, T32 ES016646]
  2. University of Cincinnati Center for Environmental Genetics [P30 ES006096]
  3. Flight Attendant Medical Research Institute

Ask authors/readers for more resources

Chronic obstructive pulmonary disease (COPD) is a debilitating, progressive lung disease punctuated by exacerbations of symptoms. COPD exacerbations are most often associated with viral infections, and exposure to cigarette smoke (CS) followed by viral infection has been shown experimentally to enhance lung inflammation, tissue destruction, and airway fibrosis. Despite this, however, the cellular mechanisms responsible for this effect are unknown. In this study, we examined NK cell function in a mouse model of COPD given the vital role of NK cells following viral infection. Ex vivo stimulation of lung leukocytes with poly(I:C), ssRNA40, or ODN1826 enhanced production of NK cell-derived IFN-gamma in CS-exposed mice. NK cells from CS-exposed mice exhibited a novel form of priming; highly purified NK cells from CS-exposed mice, relative to NK cells from filtered air-exposed mice, produced more IFN-gamma following stimulation with IL-12, IL-18, or both. Further, NK cell priming was lost following smoking cessation. NKG2D stimulation through overexpression of Raet1 on the lung epithelium primed NK cell responsiveness to poly(I:C), ssRNA40, or ODN1826 stimulation, but not cytokine stimulation. In addition, NK cells from CS-exposed mice expressed more cell surface CD107a upon stimulation, demonstrating that the NK cell degranulation response was also primed. Together, these results reveal a novel mechanism of activation of the innate immune system and highlight NK cells as important cellular targets in controlling COPD exacerbations. The Journal of Immunology; 2010, 184: 4460-4469.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available