4.6 Article

Thymic Stromal Lymphopoietin-Activated Plasmacytoid Dendritic Cells Induce the Generation of FOXP3+ Regulatory T Cells in Human Thymus

Journal

JOURNAL OF IMMUNOLOGY
Volume 184, Issue 6, Pages 2999-3007

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.0804106

Keywords

-

Categories

Funding

  1. National Institutes of Health [AI062888-01]
  2. Keck Foundation

Ask authors/readers for more resources

Human thymus contains major dendritic cell (DC) subsets, myeloid DCs (mDCs), and plasmacytoid DCs (pDCs). We previously showed that mDCs, educated by thymic stromal lymphopoietin (TSLP) produced by the epithelial cells of the Hassall's corpuscles, induced differentiation of CD4(+)CD25(-) thymocytes into Forkhead Box P3(+) (FOXP3(+)) regulatory T cells (T-R) within the medulla of human thymus. In this study, we show that pDCs expressed the TSLP receptor and IL-7 receptor alpha complexes upon activation and became responsive to TSLP. TSLP-activated human pDCs secrete macrophage-derived chemokine CCL-22 and thymus- and activation-regulated chemokine CCL-17 but not Th1- or Th2-polarizing cytokines. TSLP-activated pDCs induced the generation of FOXP3(+) T-R from CD4(+)CD8(-)CD25(-) thymocytes, which could be strongly inhibited by Th1-polarizing cytokine IL-12 or Th2-polarizing cytokine IL-4. Interestingly, the FOXP3+ TR induced by the TSLP-pDCs expressed more IL-10 but less TGF-beta than that induced by the TSLP-mDCs. These data suggest that TSLP expressed by thymic epithelial cells can activate mDCs and pDCs to positively select the FOXP3(+) T-R with different cytokine production potential in human thymus. The inability of TSLP to induce DC maturation without producing Th1- or Th2-polarizing cytokines may provide a thymic niche for T-R development. The Journal of Immunology, 2010, 184: 2999-3007.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available