4.6 Article

A Notch Ligand, Delta-Like 1 Functions As an Adhesion Molecule for Mast Cells

Journal

JOURNAL OF IMMUNOLOGY
Volume 185, Issue 7, Pages 3905-3912

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.1000195

Keywords

-

Categories

Funding

  1. Ministry of Education, Culture, Sports, Science, and Technology of the Japanese government
  2. Canada Research Chair in Developmental Immunology

Ask authors/readers for more resources

Mast cells (MCs) accumulate in chronic inflammatory sites; however, it is not clear which adhesion molecules are involved in this process. Recently, the expression of Notch ligands was reported to be upregulated in inflammatory sites. Although Notch receptors are known as signaling molecules that can activate integrins, their contributions to the adhesion of MCs have not been studied. In this study, we demonstrated that mouse MCs efficiently adhered to stromal cells forced to express a Notch ligand, Delta-like 1 (Dll1). Surprisingly, the adhesion was a consequence of direct cell-cell interaction between MCs and Dll1-expressing stromal cells rather than activation of downstream effectors of Notch receptor(s)-Dll1. The adhesion of MCs to Dll1-expressing stromal cells remained even when the cell metabolism was arrested. The recognition was blocked only by inhibition of Notch receptor(s)-Dll1 interaction by addition of soluble DLL1, or mAbs against Dll1 or Notch2. Taken together, these results indicate that Notch receptor(s) and Dll1 directly promote the adhesion of MCs to stromal cells by acting as adhesion molecules. This appreciation that Notch receptor-ligand interactions have an adhesion function will provide an important clue to molecular basis of accumulation of MCs to inflammatory sites. The Journal of Immunology, 2010, 185: 3905-3912.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available