4.6 Article

IDO Activates Regulatory T Cells and Blocks Their Conversion into Th17-Like T Cells

Journal

JOURNAL OF IMMUNOLOGY
Volume 183, Issue 4, Pages 2475-2483

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.0900986

Keywords

-

Categories

Funding

  1. National Institutes of Health [HD041187, AI063402, CA103320, CA096651, CA112431]

Ask authors/readers for more resources

TLR ligands are effective vaccine adjuvants because they stimulate robust proinflammatory and immune effector responses and they abrogate suppression mediated by regulatory T cells (Tregs). Paradoxically, systemic administration of high doses of CpGs that bind to TLR9 ligands stimulated Tregs in mouse spleen to acquire potent suppressor activity dependent on interactions between programmed death-1 and its ligands. This response to CpG treatment manifested 8-12 h and was mediated by a rare population of plasmacytoid dendritic cells (CD19(+) pDC) induced to express the immunosuppressive enzyme IDO after TLR9 ligation. When IDO was blocked, CpG treatment did not activate Tregs, but instead stimulated pDCs to uniformly express the proinflammatory cytokine IL-6, which in turn reprogrammed Foxp3-lineage Tregs to express IL-17. Thus, CpG-induced IDO activity in pDCs acted as a pivotal molecular switch that induced Tregs to acquire a stable suppressor phenotype, while simultaneously blocking CpG-induced IL-6 expression required to reprogram Tregs to become Th17-like effector T cells. These findings support the hypothesis that IDO dominantly controls the functional status of Tregs in response to inflammatory stimuli in physiological settings. The Journal of Immunology, 2009, 183: 2475-2483.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available