4.6 Article

Role of Double-Stranded RNA Pattern Recognition Receptors in Rhinovirus-Induced Airway Epithelial Cell Responses

Journal

JOURNAL OF IMMUNOLOGY
Volume 183, Issue 11, Pages 6989-6997

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.0901386

Keywords

-

Categories

Funding

  1. National Institutes of Health [HL81420, 82550]
  2. NATIONAL HEART, LUNG, AND BLOOD INSTITUTE [R01HL082550, R01HL081420] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Rhinovirus (RV), a ssRNA virus of the picornavirus family, is a major cause of the common cold as well as asthma and chronic obstructive pulmonary disease exacerbations. Viral dsRNA produced during replication may be recognized by the host pattern recognition receptors TLR-3, retinoic acid-inducible gene (RIG)-I, and melanoma differentiation-associated gene (MDA)-5. No study has yet identified the receptor required for sensing RV dsRNA. To examine this, BEAS-2B human bronchial epithelial cells were infected with intact RV-1B or replication-deficient UV-irradiated virus, and IFN and IFN-stimulated gene expression was determined by quantitative PCR. The separate requirements of RIG-I, MDA5, and IFN response factor (IRF)-3 were determined using their respective small interfering RNAs (siRNA). The requirement of TLR3 was determined using siRNA against the TLR3 adaptor molecule Toll/IL-1R homologous region-domain-containing adapter-inducing IFN-beta (TRIF). Intact RV-1B, but not UV-irradiated RV, induced IRF3 phosphorylation and dimerization, as well as mRNA expression of IFN-beta, IFN-lambda 1, IFN-lambda 2/3, IRF7, RIG-I, NIDA5, 10-kDa IFN-gamma-inducible protein/CXCL10, IL-8/CXCL8, and GM-CSF. siRNA against IRF3, MDA5, and TRIF, but not RIG-I, decreased RV-1B-induced expression of IFN-beta, IFN-lambda 1, IFN-lambda 2/3, IRF7, RIG-I, MDA5, and inflammatory protein-10/CXCL10 but had no effect on IL-8/CXCL8 and GM-CSF. siRNAs against MDA5 and TRIF also reduced IRF3 dimerization. Finally, in primary cells, transfection with MDA5 SiRNA significantly reduced IFN expression, as it did in BEAS-2B cells. These results suggest that TLR3 and MDA5, but not RIG-I, are required for maximal sensing of RV dsRNA and that TLR3 and MDA5 signal through a common downstream signaling intermediate, IRF3. The Journal of Immunology, 2009, 183: 6989-6997.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available