4.6 Article

Epilysin (MMP-28) Restrains Early Macrophage Recruitment in Pseudomonas aeruginosa Pneumonia

Journal

JOURNAL OF IMMUNOLOGY
Volume 182, Issue 6, Pages 3866-3876

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.0713949

Keywords

-

Categories

Funding

  1. National Institutes of Health [HL077555, HL084385]
  2. Academy of Finland
  3. Helsinki University Hospital

Ask authors/readers for more resources

Several members of the matrix metalloproteinase (MMP) family function in various processes of innate immunity, particularly in controlling leukocyte influx. Epilysin (MMP-28) is expressed in numerous tissues and, in adult mice, it has the highest expression in lung, where it is detected in bronchial epithelial cells (Clara cells). Epilysin is also expressed by bone marrow-derived macrophages, but not by alveolar macrophages, suggesting that its expression by macrophages is dependent on localization and differentiation. To assess the role of this MMP, we generated epilysin-null (Mmp28(-/-)) mice. Although epilysin is constitutively expressed in normal tissues, Mmp28(-/-) mice have no overt phenotype. However, using a murine model of Pseudomonas aeruginosa pneumonia, we found that Minp28(-/-) mice had an early increase in macrophage recruitment into the lungs, as well as enhanced bacterial clearance and reduced pulmonary neutrophilia, which we predicted were due to accelerated macrophage influx. Macrophage depletion in WT and Mmp28(-/-) mice confirmed a role for macrophages in clearing P. aeruginosa and regulating neutrophil recruitment. Furthermore, we observed that macrophages derived from Minp28(-/-) mice migrated faster than did wildtype cells to bronchoalveolar lavage fluid from P. aeruginosa-treated mice of either genotype. These observations indicate that epilysin functions as an intrinsic negative regulator of macrophage recruitment by retarding the chemotaxis of these cells. The Journal of Immunology, 2009, 182: 3866-3876.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available