4.6 Article

Conditional Inactivation of TACE by a Sox9 Promoter Leads to Osteoporosis and Increased Granulopoiesis via Dysregulation of IL-17 and G-CSF

Journal

JOURNAL OF IMMUNOLOGY
Volume 182, Issue 4, Pages 2093-2101

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.0802491

Keywords

-

Categories

Funding

  1. The Uehara Memorial Foundation
  2. The Mochida Memorial Foundation
  3. Ministry of Education, Culture, Sports, Science, and Technology of Japan [19591765]
  4. Grants-in-Aid for Scientific Research [19591765] Funding Source: KAKEN

Ask authors/readers for more resources

The TNF-alpha converting enzyme (TACE/ADAM17) is involved in the proteolytic release of the ectodomain of diverse cell surface proteins with critical roles in development, immunity, and hematopoiesis. As the perinatal lethality of TACE-deficient mice has prevented an analysis of the roles of TACE in adult animals, we generated mice in which floxed Tace alleles were deleted by Cre recombinase driven by a Sox9 promoter. These mutant mice survived up to 9-10 mo, but exhibited severe growth retardation as well as skin defects and infertility. The analysis of the skeletal system revealed shorter long bones and prominent bone loss, characterized by an increase in osteoclast and osteoblast activity. In addition, these mice exhibited hypercellularity in the bone marrow and extramedullary hematopoiesis in the spleen and liver. Flow cytometric analysis of the bone marrow cells showed a sharp increase in granulopoiesis and in the population of c-Kit-1(+) Sea-1(+) lineage(-) cells, and a decrease in lymphopoiesis. Moreover, we found that serum levels of IL-17 and G-CSF were significantly elevated compared with control littermates. These findings indicate that TACE is associated with a regulation of IL-17 and G-CSF expression in vivo, and that the dysregulation in G-CSF production is causally related to both the osteoporosis-like phenotype and the defects in the hematopoietic system. The Journal of Immunology, 2009, 182: 2093-2101.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available